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The G2A receptor (GPR132) 
contributes to oxaliplatin-induced 
mechanical pain hypersensitivity
Stephan W. Hohmann1, Carlo Angioni1, Sorin Tunaru2, Seungkyu Lee   3, Clifford J. Woolf3, 
Stefan Offermanns2, Gerd Geisslinger1,4, Klaus Scholich1 & Marco Sisignano   1

Chemotherapy-induced peripheral neuropathic pain (CIPN) is a common and severe debilitating side 
effect of many widely used cytostatics. However, there is no approved pharmacological treatment for 
CIPN available. Among other substances, oxaliplatin causes CIPN in up to 80% of treated patients. 
Here, we report the involvement of the G-protein coupled receptor G2A (GPR132) in oxaliplatin-
induced neuropathic pain in mice. We found that mice deficient in the G2A-receptor show decreased 
mechanical hypersensitivity after oxaliplatin treatment. Lipid ligands of G2A were found in increased 
concentrations in the sciatic nerve and dorsal root ganglia of oxaliplatin treated mice. Calcium imaging 
and patch-clamp experiments show that G2A activation sensitizes the ligand-gated ion channel TRPV1 
in sensory neurons via activation of PKC. Based on these findings, we conclude that targeting G2A may 
be a promising approach to reduce oxaliplatin-induced TRPV1-sensitization and the hyperexcitability of 
sensory neurons and thereby to reduce pain in patients treated with this chemotherapeutic agent.

Chemotherapy-induced peripheral neuropathic pain (CIPN) is a severe adverse event of cytostatic drugs during 
cancer therapy. CIPN is one of the major reasons for delay or discontinuation of chemotherapy and is therefore 
responsible for decreased chemotherapeutic efficacy and loss of quality of life1, 2. Currently, there are no drugs 
available for the prevention or effective treatment of CIPN1, 3. One of the most frequently used agents causing 
CIPN is the platinum derivate oxaliplatin. It is widely used as first-line treatment for e.g. colorectal carcinomas 
and induces CIPN in up to 80% of patients4. Oxaliplatin can cause two different types of pain, an acute pain syn-
drome in the beginning of treatment which usually subsides within a few days, and with later onset, a chronic 
distal sensory neuropathy. These symptoms manifest in the extremities of the body and may proceed along the 
limbs over the course of repetitive treatment4, 5.

The molecular mechanisms underlying oxaliplatin-induced peripheral neuropathic pain are still unclear, but 
it is known that ligand-gated ion channels such as transient receptor potential (TRP) channels may contribute to 
the pathology of CIPN. Under physiological conditions TRP channels serve for the perception of external stimuli 
like heat or capsaicin from chilli pepper (TRPV1), low pH or allyl isothiocyanate from wasabi (TRPA1), cool 
temperatures or menthol from peppermint (TRPM8) as well as osmotic and mechanical stimulations (TRPA1, 
TRPV4, TRPC3 and TRPC6)6. Under pathophysiological conditions TRP channels are sensitized, which causes 
a reduction of their activation threshold and thereby increased sensitivity to painful (hyperalgesia) or normally 
non-painful (allodynia) stimuli7. These sensitization effects on TRP channels can be mediated by the activation 
of G-protein coupled receptors (GPCRs). This activation of G-protein-dependent signaling pathways leads to 
protein kinase A (PKA)- and PKCε-mediated phosphorylation of TRP channels causing a reduction of their acti-
vation threshold8, 9. Increased sensitization of TRPV1, TRPA1 and TRPV4 have been demonstrated to contribute 
to mechanical hypersensitivity and cold allodynia in chemotherapy-induced peripheral neuropathic pain10–12.

Treatment with cytostatics, such as oxaliplatin, induces sensitization mechanisms in the peripheral nervous 
system, leading to increased activity of peripheral sensory neurons and increased pain perception1. Interestingly, 
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the G-protein coupled receptor G2A (GRP132) is described to be expressed in TRPV1-expressing peripheral sen-
sory neurons13 which play an important role in the pathophysiology of pain and in the development of CIPN1. The 
expression of G2A has been demonstrated to be upregulated by different DNA-damaging agents14. We therefore 
hypothesize that treatment with oxaliplatin induces G2A-expression in peripheral sensory neurons and thereby 
contributes to sensitization of nociceptive neurons and subsequently to oxaliplatin-induced neuropathic pain.

Results
G2A-deficient mice have reduced oxaliplatin-induced mechanical hypersensitivity.  First 
we tested the effect of oxaliplatin (3 mg/kg oxaliplatin10 i.p.) on the mechanical pain thresholds of wild type 
C57BL/6N mice over ten days using a dynamic plantar aesthesiometer. Oxaliplatin-treated mice showed sig-
nificantly reduced paw withdrawal latencies starting at day four with maximal effects between days eight to ten 
(Fig. 1A). Since it is known that oxaliplatin does not induce heat hyperalgesia in animals or in patients15, 16, we did 
not determine thermal thresholds in mice following oxaliplatin treatment. Instead, we next investigated the effect 
of oxaliplatin treatment on the mechanical pain thresholds of G2A-deficient mice. To verify the absence of G2A, 
we performed qRT-PCR on DRGs of G2A-deficient mice and could not measure any detectable transcript (data 
not shown). In behaviour experiments we observed significantly reduced mechanical hypersensitivity over ten 
days after treatment as compared to wild type mice (Fig. 1B).

It has been shown previously that oxidized lipids, predominately oxidized linoleic acid metabolites, are ago-
nists of G2A17. To investigate whether or not endogenous G2A-agonists such as 9-HODE and 13-HODE are 
synthesized in response to oxaliplatin treatment, we determined the levels of oxidized lipids via LC-MS/MS 
ten days after treatment with oxaliplatin (3 mg/kg) or vehicle (0.9% DMSO) in plantar paw tissue, sciatic nerve, 
L1-L6 DRGs and the corresponding section of the dorsal horn of mice. We quantified the concentrations of 
oxidized linoleic acid metabolites (OLAMs) hydroxyoctadecadienoic acids (HODEs), dihydroxyoctadecenoic 
acids (DiHOMEs), and epoxyoctadecenoic acids (EpOMEs) that have been reported to be synthesized during 
inflammatory pain previously18 and found that the concentrations of 9-HODE (Fig. 2A) and 13-HODE (Fig. 2B) 
were significantly increased in the sciatic nerve and DRGs, and concentrations of 9-HODE decreased in plantar 
paw tissue, after treatment with oxaliplatin. There were no changes in concentrations observed in the dorsal horn 
of the spinal cord. The concentrations of 9,10-DiHOME (Fig. 2C) and 12,13-DiHOME (Fig. 2D) were not altered 
in any of the tissues analysed and the concentrations of 9,10-EpOME and 12,13-EpOME were below the detection 
limit.

9-HODE-induced sensitization of TRPV1 in sensory neurons is mediated by G2A-induced 
PKC-activation.  9-HODE is one of the most potent agonists for the G-protein coupled receptor G2A19. To 
investigate whether or not 9-HODE may act on the G2A receptor, we used HEK-293 cells overexpressing G2A 
and observed increased intracellular calcium concentrations after stimulation with 9-HODE (Fig. 3A and B). To 
verify this, we used another heterologous expression (COS-1 cells with a sensitive aequorin-calcium-system) and 
observed that the activation of G2A by 9-HODE is concentration-dependent (Fig. 3C). To investigate whether 
the activation of G2A is specific for 9-HODE, we stimulated G2A-overexpressing cells with 13-HODE, as well 
as the precursor linoleic acid and arachidonic acid. 13-HODE activates the G2A to a lesser extent as compared 
to 9-HODE, but we did not observe any increase in intracellular calcium concentration after stimulation with 
linoleic acid or arachidonic acid (Fig. 3D).

The TRPV1 channel is one of the prominent members of ligand-gated ion channels in the perception of pain7. 
It was recently shown, that TRPV1 takes a crucial role during the cause of CIPN through receptor-signaling20. 
This type of signaling is commonly mediated via activation of GPCRs21, 22. We therefore investigated whether or 

Figure 1.  G2A-deficient mice have reduced oxaliplatin-induced mechanical pain thresholds. (A) Mechanical 
pain thresholds of mice after i.p.-injection of oxaliplatin (3 mg/kg) compared to vehicle (0.9% v/v DMSO) 
using a dynamic plantar aesthesiometer over ten days. Shown is the mean ± SEM of paw withdrawal latency 
(PWL) of n = 8 mice per group. (B) Mechanical pain thresholds of wildtype (WT) compared to G2A-deficient 
mice after treatment with oxaliplatin (3 mg/kg) using a dynamic plantar aesthesiometer over ten days. Shown 
is the mean ± SEM of PWL of n = 8 mice per group; *p < 0.05 **p < 0.01 ***p < 0.001 two-way ANOVA with 
Bonferroni post-hoc test.
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not 9-HODE or 13-HODE can sensitize TRPV1. DRG neurons from mice were stimulated with capsaicin and 
incubated with vehicle, 9-HODE or 13-HODE for two minutes before a second capsaicin stimulus was applied 
(Fig. 4A). The Δratio of the first and second peak was calculated to determine whether or not a TRPV1 sensiti-
zation occurred (Fig. 4B). We found that 9-HODE concentration-dependently induced sensitization of TRPV1 
at concentrations between 100 nM and 200 nM (Fig. 4B). In contrast, 13-HODE had no sensitizing effect on 
capsaicin-induced TRPV1 activation (Fig. 4C) probably because the required concentrations to activate G2A 
are considerably higher than the required 9-HODE concentrations. Whole-cell voltage clamp measurement of 
DRG neurons confirmed that 9-HODE induces TRPV1 sensitization; the capsaicin-induced inward current of 
cells pre-treated with 9-HODE was significantly increased compared with vehicle pre-treated cells (Fig. 4D and 
E). 9-HODE also increased capsaicin-dependent CGRP-release significantly in DRG neurons (Fig. 4H). To ana-
lyse whether other TRP channels can be affected by 9-HODE, we investigated TRPM8 and TRPA1 sensitiza-
tion caused by 9-HODE. However, 9-HODE showed no sensitizing effects on TRPM8 (activated with 100 µM 
menthol; Fig. 4F) or TRPA1 (activated with 50 µM AITC; Fig. 4G). To determine whether or not the effects of 
9-HODE towards TRPV1 sensitization are G2A-dependent, we compared primary DRG cultures of wild type 
and G2A-deficient mice and found that the 9-HODE-induced TRPV1 sensitization was absent in DRG cultures 
from G2A-deficient mice (Fig. 4I,J). These data suggest that 9-HODE activates the G2A receptor which may sub-
sequently lead to TRPV1 sensitization in mice.

TRPV1 sensitization can be mediated by PKA or PKC23, 24. To investigate the signaling pathway between 
G2A and TRPV1 in DRG neurons, we determined which protein kinases are involved by using inhibitors for 
PKA (H89; Fig. 5A) and PKC (GF-109203X; Fig. 5B) and tested their effects on the 9-HODE-induced sensi-
tization of TRPV1. Incubation of DRG neurons with the PKA-inhibitor H89 inhibited the PKA-dependent 
TRPV1 sensitization caused by 8-bromo-cAMP but failed to supress the 9-HODE-induced TRPV1 sensitization 
(Fig. 5A). However, the PKC-inhibitor GF109203X prevented TRPV1 sensitization caused by 9-HODE (Fig. 5B). 
Bradykinin was used as positive control for PKC-dependent TRPV1 sensitization. Thus, we conclude that TRPV1 
sensitization caused by G2A is PKC-dependent.

TRPV1- and G2A-deficient mice have reduced pain in response to 9-HODE and oxaliplatin treat-
ment.  To test the hypothesis that G2A mediates the pronociceptive effects of 9-HODE in vivo, we first injected  

Figure 2.  Increased oxidized lipid concentrations in sciatic nerve and DRGs after ten days’ treatment with 
oxaliplatin. Concentrations of 9-HODE (A), 13-HODE (B), 9,10-DiHOME (C) and 12,13-DiHOME (D) using 
LC-MS/MS measurements from plantar paw, sciatic nerve, DRGs and dorsal horn tissue of mice treated with 
vehicle (black bars; 0.9% v/v DMSO) or oxaliplatin (white bars; 3 mg/kg) ten days after injection. Data represent 
mean ± SEM from n = 5 mice per group; *p < 0.05 unpaired student’s t-test.
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9-HODE intraplantar into the left hind paw of naive wildtype mice and assessed their nociceptive behaviour. We 
found no change in the thermal (Fig. 6A) and mechanical (Fig. 6B) paw withdrawal latencies of these mice. Since 
G2A is known to be upregulated in response to cellular stress17, 25, we compared its expression in naive mice and 
oxaliplatin-treated mice. We found that the expression of G2A-mRNA in DRGs was significantly increased ten 
days after oxaliplatin injection (Fig. 6C). Therefore, we tested in the next step the effect of 9-HODE on mechani-
cal paw withdrawal latencies eight days after oxaliplatin injection in wild type and G2A-deficient mice, since we 
found reduced paw withdrawal latencies with maximal effects between days eight to ten. Indeed, we observed 
a strong reduction of mechanical pain thresholds in wildtype mice but not in G2A-deficient mice (Fig. 6D). 
Finally, we studied the effect of TRPV1-deletion on oxaliplatin-induced paw withdrawal latencies. To verify the 
absence of TRPV1, we performed qRT-PCR on DRGs of TRPV1-deficient mice and could not detect any G2A 
transcript (data not shown). Although TRPV1 is not a direct mechanical transducer channel, it is responsible for 
mechanical allodynia due to central sensitization26. In behaviour experiments, TRPV1-deficient mice displayed 
reduced mechanical hypersensitivity over the complete time period of eight days after treatment with oxalipla-
tin compared with wild type mice (Fig. 6E). Furthermore, intraplantar injection of 9-HODE into the left hind 
paw (ipsilateral) eight days after oxaliplatin-injection induced a strong reduction of mechanical paw withdrawal 
latencies in wild type mice but not in TRPV1-deficient mice (Fig. 6F). We conclude that G2A is the receptor for 
9-HODE and mediates the effects of this oxidized lipid on TRPV1 in primary sensory neurons during the course 
of oxaliplatin-induced pain in mice.

Discussion
Like vinca alkaloids (e.g. vincristine), taxanes (paclitaxel) or proteasome inhibitors (bortezomib), the 
platinum-derivative oxaliplatin is an antineoplastic drug which induces severe pain and neuropathy15. It is widely 
used as first-line treatment for colorectal carcinomas and causes CIPN in up to 80% of patients4. Although CIPN 
involves inflammatory processes, the key enzymes and signaling molecules seem to differ as compared to clas-
sical inflammatory pain models. Inside the cells, oxaliplatin is degraded to oxalate and platinum. The oxalate 
may cause disturbance of neuronal membrane potentials and of the activity of voltage-gated ion channels by 

Figure 3.  9-HODE activates the G2A-receptor (GRP132). (A,B) Shown are calcium concentrations of HEK-293 
cells transfected with G2A-vector or pcDNA3.1 (empty vector) stimulated with 9-HODE (1 µM). Thapsigargin 
(1 µM) was used as positive control. (A) Shows a representative trace and (B) the quantitative analysis presented 
as mean ± SEM with n = 32–46 cells per condition. ***p < 0.001 unpaired student’s t-test. (C) Dose-response 
analysis of COS-1 cells co-transfected with aequorin- and G2A-expressing vector or pcDNA3.1 (empty 
vector). Seen is the calcium flux as area under curve (AUC) at different 9-HODE and 13-HODE concentrations 
[10−9–10−5 M]. Data are presented as mean ± SEM from n = 3 measurements. (D) COS-1 cells cotransfected 
with aequorin- and G2A-expressing vector stimulated with 9-HODE (10 µM), 13-HODE (10 µM), linoleic acid 
(30 µM) and arachidonic acid (30 µM). Shown is the calcium flux as mean of area under curve (AUC) ± SEM 
with n = 3 measurements; ***p < 0.001 one-way ANOVA with Bonferroni post-hoc test.
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chelating intracellular calcium27, 28. Furthermore, oxaliplatin induces cell damage, leading to the activation of 
p38-mitogen activated protein kinase (MAPK) pathways possibly induced by DNA damage29, 30. The production 
of reactive oxygen species (ROS) in neuronal cells has also been observed in response to oxaliplatin-treatment 
and seems to be induced by mitochondrial dysfunction31, 32. The combination of these mechanisms causes cel-
lular stress responses in peripheral sensory neurons which contribute to oxaliplatin-induced CIPN. Indeed, the 
G2A-receptor has been described as stress-inducible GPCR that functions at the G2/M checkpoint of the cell cycle 

Figure 4.  9-HODE-dependent activation of G2A causes TRPV1 sensitization. (A) Stimulation of TRPV1 
of adult DRG neurons two times with capsaicin (Cap; 200 nM, 30 s). Incubation with 9-HODE (200 nM, 
120 s) before the second stimulus leads to an increased calcium flux compared to the first stimulus (Δratio). 
Neurons were identified by responses to KCl (50 mM, 10 s). Shown is a representative trace. (B) 9-HODE 
dose-dependently sensitizes the TRPV1 channel of DRG neurons. Shown is the Δratio of the first and second 
capsaicin stimulus at 9-HODE concentrations ranging from 0 to 1000 nM. Data are presented as mean ± SEM 
with n = 44–99 neurons per concentration; **p < 0.01 one-way ANOVA with Bonferroni post-hoc test. (C) 
13-HODE (200 nM, 120 s) does not increase the Δratio of TRPV1-dependent calcium flux in DRG neurons 
(n = 30–83). (D) Sample trace of whole-cell voltage clamp measurement of DRG neurons treated with capsaicin 
(1 µM, 15 s) twice. Before the second cap-stimulus, cells were incubated with 9-HODE (200 nM, 3 min). (E) 
Normalized response to first and second capsaicin-stimulus with cells treated like in (D) shown as mean ± SEM 
with n = 11 neurons; **p < 0.01 unpaired student’s t-test. Effect of 9-HODE on TRPM8 (F) of DRG neurons 
stimulated with menthol (100 µM, 30 s) and TRPA1 (G) stimulated with allyl isothiocyanate (50 µM, 30 s). 
The Δratio is depicted compared to vehicle (DMSO) with n = 20–33 neurons per condition. (H) CGRP release 
from DRG neurons stimulated with 9-HODE (1 µM, 10 min), capsaicin (400 nM, 10 min) or both together. 
Data shown as mean ± SEM from n = 6–8 mice per condition; *p < 0.05 ***p < 0.001 one-way ANOVA with 
Bonferroni post-hoc test. (I,J) Incubation of adult DRG neurons with 9-HODE (200 nM, 120 s) prior to the 
second capsaicin stimulus (Cap; 200 nM, 30 s) leads to an increased calcium flux compared to the first stimulus 
(Δratio) in DRG neurons of wildtype (WT) but not in G2A-deficient mice. Neurons were identified by responses 
to KCl (40 mM, 10 s). (I) Representative trace. (J) The quantitative analysis presented as mean ± SEM with 
n = 46–110 cells per condition; ***p < 0.001 one-way ANOVA with Bonferroni post-hoc test.
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and its expression is induced by several classes of DNA-damaging agents14. We found the G2A-mRNA expression 
increased after treatment of wild type mice with oxaliplatin, thus pointing towards an oxaliplatin-induced induc-
tion of G2A gene expression in sensory neurons.

The G2A-receptor is classified as a member of the proton sensing GPCR subfamily, but its ability to act as a 
pH-sensor is less distinct than the other members of this family (OGR1, GPR4, TDAG8)33. Some histidine resi-
dues in the N-terminal extracellular regions and extracellular loops were found to be critical for proton-sensing 
activity and are exchanged by other basic amino acids like lysine and arginine in the G2A-receptor34. However, 
the G2A acts as a receptor for endogenous polyunsaturated fatty acids like OLAMs19. We show that the concen-
trations of the endogenous G2A agonists 9-HODE and 13-HODE are increased in the DRGs and sciatic nerve, 
but not in the spinal cord of oxaliplatin-treated mice. We also observed decreased concentrations of 9-HODE 
in plantar paw tissue. The increased production of 9-HODE in sciatic nerve and DRG tissue and the decreased 
concentrations of this lipid in plantar paw tissue, which is a mixture of various cell types, indicate, that synthesis 
of 9-HODE is restricted to neuronal tissue during oxaliplatin-induced CIPN. This supports previous reports of 
neuronal 9-HODE synthesis in NGF-induced pain18.

The oxidized lipid 9-HODE activates G2A19 and here we confirm this in a dose-response analysis. We also 
observed that 13-HODE activates G2A, although the concentrations required for this activation were around 
six-fold higher than the required concentrations of 9-HODE and we do not think that these are physiologi-
cally occurring concentrations. Therefore, we focused on 9-HODE-dependent G2A-activation in this study, as 
9-HODE seems to be a more potent G2A agonist. Injection of 9-HODE in untreated naive mice did not evoke 
thermal or mechanical pain, while mice treated with oxaliplatin showed enhanced mechanical hypersensitivity 
after injection of 9-HODE. These findings suggest the necessity of an induction of the G2A-receptor in neurons 
by pathological stimuli before it can carry out its pro-nociceptive activity.

Stressful situations like chemotherapy treatment and subsequent damage of sensory neurons as well as periph-
eral nerves may induce both ligand production (9-HODE) and receptor expression (G2A). Previous studies 
described that 9-HODE is a direct activator of TRPV1 at high concentrations (100 µM)35, although direct activa-
tion of TRPV1 by 9-HODE is controversial36, 37. We found that 9-HODE sensitizes TRPV1 at concentrations of 
200 nM which is several magnitudes lower than the direct effects and is also considerably lower as compared to 
other TRPV1 sensitizing lipids (e.g. PGE2 1 µM8, 20-HETE 10–30 µM38). We also observed that 9-HODE increases 
TRPV1-dependent release of the neuropeptide CGRP. Together with our observation of decreased mechanical 
hypersensitivity in TRPV1-deficient mice during oxaliplatin treatment as well as after injection of 9-HODE, these 
findings indicate, that the role of 9-HODE-dependent G2A activation during oxaliplatin treatment is predom-
inantly driven by TRPV1-dependent effects in sensory neurons. Moreover, previous studies described the con-
tribution of TRPA1 and TRPM8 to oxaliplatin induced neuropathic pain10, 39, however, we did not observe any 
9-HODE-dependent sensitization effect on TRPA1 or TRPM8.

Although TRPV1 is not a direct mechanical transducer channel, it may be responsible for oxaliplatin-induced 
mechanical hypersensitivity due to central sensitization. It was previously shown that increased TRPV1-activity 
caused by capsaicin and increased nociceptive input in the spinal cord leads to central sensitization which 
can subsequently cause mechanical hypersensitivity in the periphery by sensitizing mechanically sensitive 
Aδ-fibers26. Indeed, the involvement of TRPV1 in chemotherapy-induced pain has been indicated before12. 
Moreover, in a recently published study20, pharmacological inhibition of TRPV1 with a selective antagonist 
strongly reduced paclitaxel-induced mechanical hypersensitivity, thus indicating the importance of TRPV1 in 
chemotherapy-induced mechanical pain hypersensitivity.

Figure 5.  TRPV1 sensitization via 9-HODE-dependent activation of G2A is mediated by PKC but not PKA. 
(A) Sensitization of TRPV1 via 9-HODE (200 nM, 120 s) of adult DRG neurons is not influenced by the 
PKA-Inhibitor H89 (10 µM, 45 min before measurement) in calcium imaging experiments. As control for 
PKA-dependent TRPV1 sensitization 8-bromo-cAMP (40 µM, 120 s) was used. Data shown as mean ± SEM 
with n = 20–69 cells per condition. (B) The PKC-Inhibitor GF109203X (1 µM, 45 min before measurement) 
suppresses the 9-HODE-dependent sensitization of TRPV1. Bradykinin (500 nM, 120 s) was used as positive 
control for PKC-dependent sensitization of TRPV1. Data is shown as mean ± SEM with n = 45–90 cells per 
condition; *p < 0.05 **p < 0.01 one-way ANOVA with Bonferroni post-hoc test.
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According to our results, the G2A-receptor in DRGs causes PKC-activation and subsequent TRPV1 sensi-
tization in peripheral sensory neurons. This is in line with previous reports concerning the coupling of G2A40. 
Furthermore, the G2A receptor is described to be expressed in 32% of total DRG neuron population and 
co-localized with TRPV1 in 46% of all G2A-positive neurons13, thus supporting our hypothesis that G2A sensi-
tizes TRPV1 in a subset of sensory neurons. We therefore suggest, that targeting the G2A receptor and blocking 
the 9-HODE-G2A-PKC-TRPV1 pathway might offer a novel approach for the treatment of oxaliplatin-induced 
neuropathic pain.

Methods
Ethics Statement.  All experiments with animals involved were approved by the local Ethics Committees 
for Animal Research (Darmstadt) with the permit numbers F95/47 and FK/1046 and were performed according 
to the recommendations of the Guide of the Care and Use of Laboratory Animals of the National Institutes of 
Health41. All efforts were made to minimize suffering.

Animals.  In all behavioral tests the experimenter was unaware of the treatment or the genotype of the mice. 
For all behavioral experiments, we used 6–12 weeks old C57BL/6N mice purchased from commercial breed-
ing companies (Charles River, Sulzfeld, Germany, Janvier, Le Geneset-Saint-Isle, FR). G2A-deficient mice were 
generated by the lab of Owen Witte, University of California at San Francisco42 and TRPV1-deficient mice were 
generated by the lab of David Julius, University of California, Los Angeles43. Both lines were obtained from 
Jackson laboratories. All preclinical pain models were in accordance with the suggestions from the Preclinical 
Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group44.

Figure 6.  G2A-deficient and TRPV1-deficient mice have reduced 9-HODE-dependent mechanical pain during 
oxaliplatin treatment. (A) Thermal pain thresholds of naive wildtype mice after i.pl. (intraplantar) injection 
of 9-HODE (1 µM and 10 µM) into the left hind paw using a Radiant Heat Test. Shown is the mean ± SEM of 
PWL of n = 8 mice per group. (B) Mechanical pain thresholds of naive wildtype mice after i.pl. (intraplantar) 
injection of 9-HODE (10 µM) into the left hind paw using a dynamic plantar aesthesiometer. Shown is the 
mean ± SEM of PWL of n = 6 mice per group. (C) G2A-mRNA expression in DRG of mice treated with 
oxaliplatin (3 mg/kg) for ten days compared to vehicle treated mice. Data presented as mean ± SEM with n = 4 
mice per group; *p < 0.05 unpaired student’s t-test. (D) Mechanical pain thresholds of wildtype compared 
to G2A-deficient mice after treatment with oxaliplatin (3 mg/kg) over eight days. Then 9-HODE (10 µM) 
was injected i.pl. into the left hind paw and PWL was measured again after 0.5 h, 1 h and 2 h. Shown is the 
mean ± SEM of PWL of the 9-HODE treated paw of n = 7 mice per group; ***p < 0.001 two-way ANOVA with 
Bonferroni post-hoc test. (E) Mechanical pain thresholds of wildtype mice (WT) compared to TRPV1-deficient 
mice after treatment with oxaliplatin (3 mg/kg) using a dynamic plantar aesthesiometer over eight days. Shown 
is the mean ± SEM of PWL of the contralateral paw (untreated) of n = 7 mice per group; ***p < 0.001 two-way 
ANOVA. (F) Mechanical pain thresholds of wildtype mice compared to TRPV1-deficient mice after treatment 
with oxaliplatin (3 mg/kg). At day eight, 9-HODE (10 µM) was injected i.pl. into the ipsilateral paw and PWL 
was measured again after 0.5 h, 1 h and 2 h. Shown is the mean ± SEM of PWL of the ipsilateral paw (9-HODE 
treated) of n = 7 mice per group; ***p < 0.001 two-way ANOVA with Bonferroni post-hoc test.
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Treatments.  All mice were randomized to the treatment. For the intraplantar (i.pl.) treatment with 10 µM 
9-HODE ((±)-9-hydroxy-10E,12Z-octadecadienoic acid) (Cayman), a volume of 10 µl was injected in the 
mid-plantar area of the hindpaw. For the intraperitoneal (i.p.) treatment, 100 µl of Oxaliplatin (3 mg/kg, Tocris) 
were injected into the peritoneum. The control group animals were treated with the corresponding volumes of 
0.9% DMSO (v/v) solution.

Behavioral Testing.  Mechanical pain.  To determine the mechanical thresholds of mice, a Dynamic Plantar 
Aesthesiometer (Ugo Basile, Comerio, Italy) was used. Mice were put on an elevated grid in test cages at least 2 h 
before the measurement to allow accommodation. Then, baseline measurement was performed before the treat-
ment with Oxaliplatin or 9-HODE. Therefore, a steel rod pushed against the plantar side of the hind paw with 
linear ascending force (0–5 g over 10 s, in 0.5 g/s intervals) until a fast withdraw of the paw was observed. The time 
between the first contact of the steel rod and the paw withdraw was measured in seconds (paw withdraw latency) 
and a cut-off time of 20 s was set45.

Thermal pain.  To determine the thermal thresholds, mice were kept in test cages on a warmed glass plate (32 °C) 
for at least 2 h on the first day to allow accommodation. Then the mid-plantar region of the paws was stimulated 
with a radiant heat device, consisting of a high-intensity projector lamp, until withdrawal occurred, as described 
before46. The non-injected and injected paws were measured alternately in intervals of 5–10 min.

Determination of Lipids from Tissue Samples by LC-MS/MS.  The spinal cord from L4-L6, both sci-
atic nerves, dorsal root ganglia (DRGs) from L1-L6 as well as the plantar paw tissue were prepared from adult 
mice.

Lipid extraction and standards.  Stock solutions with 2500 ng/ml of the analytes 9-HODE ((±)-9-hydr
oxy-10E,12Z-octadecadienoic acid), 13-HODE ((±)-13-hydroxy-9Z,11E-octadecadienoic acid), 9,10-EpOME 
((±)9,10-epoxy-12Z-octadecenoic acid), 12,13-EpOME ((±)12(13)epoxy-9Z-octadecenoic acid), 9,10-DiHOME 
((±)9,10-dihydroxy-12Z-octadecenoic acid) and 12,13-DiHOME ((±)12,13-dihydroxy-9Z-octadecenoic 
acid), as well as their internal standards (9- and 13-HODE-d4, 9,10- and 12,13-EpOME-d4, 9,10- and 
12,13-DiHOME-d4) were prepared in methanol. Working standards were obtained by further dilution with a 
concentration range of 0.25–2500 ng/ml for the analyte.

Lipids were extracted using liquid–liquid extraction. Therefore, homogenated tissue was extracted twice 
with 600 µl of ethyl acetate. The combined organic phases were removed at a temperature of 45 °C under a gen-
tle stream of nitrogen. The residues were reconstituted with 50 µl of methanol/water/butylated hydroxytoluene 
(BHT) (50:50:10−3, v/v/v) and then centrifuged for 2 min at 10,000 g, and transferred to glass vials waiting for 
analysis.

Instrumentation for lipid measurement.  The LC-MS/MS system consisted of a QTrap 5500 (Sciex, Darmstadt, 
Germany) equipped with a Turbo-V source operating in negative electrospray ionization mode, an Agilent 1200 
binary HPLC pump and degasser (Agilent, Waldbronn, Germany), and an HTC Pal autosampler (CTC analytics, 
Zwingen, Switzerland). High-purity nitrogen for the mass spectrometer was produced by a NGM 22-LC-MS 
nitrogen generator (cmc Instruments, Eschborn, Germany).

For the chromatographic separation of oxidized lipids, a Gemini NX C18 column and precolumn were used 
(150 × 2 mm inner diameter, 5 µm particle size, and 110 Å pore size; Phenomenex, Aschaffenburg, Germany). 
A linear gradient was used at a flow rate of 0.5 ml/min with a total run time of 17.5 min. Mobile phase A con-
sist of water:ammonia (100:0.05, v/v), and mobile phase B of acetonitrile:ammonia (100:0.05, v/v). The gradient 
changed from 85% A to 10% within 12 min. These conditions were held for 1 min. Then, the mobile phase shifted 
back to 85% A within 0.5 min and it was maintained for 4 min to re-equilibrate the column.

20 µl of the extracted samples were injected into the LC-MS/MS system. Quantification was performed 
with MultiQuant 3.0 (Sciex, Darmstadt, Germany) using the internal standard method (isotope-dilution mass 
spectrometry). Ratios of analyte peak area and internal standard area (y-axis) were plotted against concentra-
tion (x-axis), and calibration curves were calculated by least-squares regression with 1/square concentration 
weighting.

Sample extraction, chromatographic separation, and lipid quantification were performed as described 
previously47.

DRG primary cultures.  The dorsal root ganglia (DRGs) neurons were isolated from mice as previously 
described48. Briefly, twenty to thirty murine dorsal roots ganglia (DRGs) were dissected from thoracal and lumbal 
spinal segments of one mouse and transferred directly into ice-cold Hanks’ Balanced Salt Solution with CaCl2 and 
MgCl2 (Invitrogen, Carlsbad, CA, USA). The DRGs were then incubated with Neurobasal Medium (Invitrogen, 
Carlsbad, CA, USA) containing 500 U/ml collagenase (Sigma, Deisenhofen, Germany) and 2.5 U/ml dispase 
II (Roche, Mannheim, Germany) for 75 min at 37 °C. After removal of the collagenase/dispase-solution cells 
were washed three times with medium containing 10% FCS, 1% penicillin, 1% streptomycin, 1% gentamycin 
(Invitrogen, Carlsbad, CA, USA) and incubated in 0.05% trypsin for 10 min at 37 °C. After two washing steps, 
the cells were mechanically dissociated with a 1 ml pipette and plated on poly-L-lysine (Sigma) coated coverslips. 
After incubation at 37 °C for 2 h, Neurobasal Medium containing glutamine (2 mm), penicillin (100 U/ml), strep-
tomycin (100 μg/ml), B-27 and gentamicin (50 μg/ml) was added to the cells and incubated overnight (modified 
after49). The neurons were used for electrophysiology and Calcium Imaging the next day.
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Calcium Imaging.  Calcium-imaging experiments were performed with a Leica calcium-imaging setup, con-
sisting of a Leica DMI 4000 b inverted microscope equipped with a DFC360 FX (CCD) camera, Fura-2 filters, 
and an N-Plan 10x/0.25 Ph1 objective (all from Leica). Images were taken every 2 s and were processed with 
the LAS AF-software (Leica). For each experiment, we chose an area with large cell numbers 24 h after prepa-
ration (see DRG primary cultures) and monitored 40–110 cells simultaneously. Cells were loaded with 5 μM 
Fura-2-AM-ester (Biotium), incubated for 45–60 min at 37 °C and washed with ringer solution (145 mM NaCl, 
1.25 mM CaCl2, 1 mM MgCl2, 5 mM KCl, 10 mM D-glucose, and 10 mM HEPES, adjusted to pH 7.3). Baseline 
measurements were performed with ringer solution at a flow rate of 1–2 ml/min at room temperature. For the 
activation of TRPV1 we used a solution of 200 nM capsaicin (Sigma), for TRPA1 activation 50 µM allyl isothi-
ocyanat (AITC, Fluka Analytic) and for TRPM8 100 µM L-menthol (Sigma) dissolved in ringer solution. For 
TRP channel sensitization, cells were incubated for 2 min with different concentrations (50 nM–1000 nM) of (±) 
9-HODE (Cayman) or (±) 13-HODE (Cayman) prior to the second stimulus. For control stimulations, the cor-
responding volume of DMSO (Sigma) was mixed in ringer solution and applied with the same flow rate. 10 µM 
of the PKA inhibitor H89 (Tocris) or 1 µM of the PKC inhibitor GF109203X (Tocris) was co-incubated with 
FURA-2 (Biotium) for 45 min. As positive control for PKA activation 40 µM 8-bromo-cAMP (Cayman) and for 
PKC activation 500 nM bradykinin (Cayman) was used. At the end of each measurement, 50 mM KCl was applied 
to identify neurons45.

Neuronal calcitonin gene-related peptide release.  For the determination of neuronal calcitonin 
gene-related peptide (CGRP) release, dorsal root ganglia (DRGs) neurons were isolated from mice as previ-
ously described48. Briefly, DRG cultures were stimulated for 10 min with 1 µM (±) 9-HODE (Cayman) alone or 
in combination with 400 nM capsaicin (Sigma). Cultures supplemented with capsaicin alone served as control. 
CGRP concentrations in supernatants were analysed utilizing the rat CGRP Enzyme ImmunoAssay Kit (SPI-Bio, 
Montigny, France) according to the manufacturer’s instructions. Absorption was measured with the Spectra Max 
250 (Molecular Devices, Ismaning, Germany)50.

Electrophysiology.  All recordings were carried out at room temperature within 48 hours of plating DRG 
neurons. Whole-cell voltage clamp recordings were made with an Axopatch 200A amplifier (Molecular Devices) 
and patch pipettes with resistances of 2–3 MΩ. Pipette solution was 5 mM NaCl, 140 mM KCl, 0.5 mM CaCl2, 
2 mM MgCl2, 5 mM EGTA, 10 mM HEPES, and 3 mM Na2ATP, pH 7.2, adjusted with NaOH. The external solu-
tion was 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, and 10 mM D-glucose, pH 7.4, 
adjusted with NaOH (Sigma). Command protocols were generated and data was digitized with a Digidata 1440A 
A/D interface with pCLAMP10 software. We used gravity perfusion system connected with perfusion pencil 
(AutoMate Scientific) to externally apply 9-HODE or capsaicin to the cells51.

Calcium measurement in vitro.  For studies with heterologously expressed G2A, HEK-293 or COS-1 cells 
were used. HEK-293 cells were seeded on coverslips and transfected with plasmid containing cDNA for G2A or 
the empty vector (mock; both obtained from cDNA.org) at a concentration of 1–2 µg DNA/coverslip in DMEM 
medium containing 10% FCS, 1% penicillin, 1% streptomycin (Invitrogen, Carlsbad, CA, USA) using Turbofect 
reagent (Thermo Fisher) and following the manufacturer’s instructions. Forty-eight hours later, cells were loaded 
with FURA-2 (Biotium) for 45 min and measured in calcium imaging experiments as described above.

COS-1 were seeded in white walls-clear bottom 96-well plates and transfected with a plasmid encoding a 
calcium-sensitive bioluminescent fusion protein between aequorin and GFP52 together with plasmid containing 
cDNA for G2A or control DNA (empty vector, mock) at a concentration of 50 ng/well by using FuGENE 6 reagent 
(Promega) following manufacturer’s instructions. Forty-eight hours later, cells were loaded with 5 µM coelenter-
azine h (Invitrogen) in HBSS containing 1.8 mM CaCl2 and 10 mM glucose for 2 h at 37 °C. Measurements were 
performed by using a luminometric plate reader (Flexstation 3). The area under each calcium transient was cal-
culated by using SoftMaxPro software and expressed as area under the curve (AUC)53.

Quantitative Real-Time PCR.  Lumbal DRGs were dissected from mice at indicated time points, and RNA 
was extracted using the mirVana miRNA Isolation Kit (Ambion, Life Technologies). Reverse transcription and 
real-time PCR were performed using the TaqMan system54 (Life Technologies) and evaluated with the ΔΔC(T) 
method as described previously55. For G2A and TRPV1, assay primers for the TaqMan system (ThermoFisher) 
were used.

Data Analysis and Statistics.  All data are presented as mean ± SEM. To determine statistically signifi-
cant differences in all behavioral experiments, Two-way ANOVA for repeated measures was used, followed 
by Bonferroni’s post hoc correction using GraphPad Prism 6. For in vitro experiments comparing only two 
groups, Student’s t test was carried out and for comparing more than two groups, One-way ANOVA followed by 
Bonferroni’s post hoc correction was used. A p value of <0.05 was considered statistically significant.
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